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ABSTRAC ?

A doubling principle first used by van de Hulst has been de-

veloped to provide rapid and accurate results for the problem of

diffuse reflection from a plane parallel atmosphere. The method

described here eliminates the need of numerically solving an equa-

tion of radiative transfer by beginning with a layer of such small

optical thickness (_~2 -25) that the initial scattering and trans-

mission functions are given by the phase function. An application

is made to spectral scattering by clouds in the near-infrared where

the phase function is strongly peaked in the forward direction.

I. INTRODUCTION

The problem of radiative transfer in plane parallel atmospheres

has been solved "exactly" only for very simple phase functions so

that a numerical approach is required for most practical applica-

tions, van de Hulst was the first to note that considerable com-

puting time could be saved if the transfer equation was solved

only for a layer of small thickness 3 and this solution was then
o

used to obtain solutions for layers of thickness 2T 0, 4To, etc.

by a "doubling" procedure. Numerical verification of the ef-

ficacy of this method was made by van de Hulst and Grossman (1968)

who used the Neumann series method (iteration in orders of scat-

tering) to obtain solutions at 30 . Then, after several doublings,

they fit their numbers to asymptotic (3 + _) results.
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In this paper we describe a computing method which gives fast

and accurate results for all optical thicknesses. We begin with a

layer of such small optical thickness that the scattering and trans-

mission functions are given to high accuracy by the phase function

for single scattering. This accuracy allows the doublings to be

carried to large optical thicknesses and asymptotic solutions are

not required. With this method it is not necessary to solve the

usual transfer equation and the computing program is applicable to

all phase functions.

II. DOUBLINGEQUATIONS

In the "standard"problem of diffuse reflection from a plane-

tary atmosphere considered by Chandrasekhar (1960) a parallel beam

of radiation of net flux _F per unit area normal to itself is in-

cident from the direction (-Uo,_o) on a plane parallel atmosphere

of optical thickness T. Now if the scattering function S(T;u,_;Uo,% o)

and the transmission function T(T;U,_;U ,# ) (defined by eq.[12_,
o O

p.20, Chandrasekhar 1960) are known then S(2T;u,#;Uo,_ o) and

T(2_;u,%;Uo,_ o) may be found by adding the ways in which diffuse

radiation may escape from the double layer:

S(2_;U,_;U0,%Q)F _ S(_;P,%;Uo,#o) F + e -T/u
4U 4p

1 _/u
--Z (T;_,$;U ,_o)F e- o

0 0

+
T(_;U,_;_',_') _ 7

0 0

(_;_, , _o)d'_ ;Uo' u'd_'Fe-T/u°

(i)
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+ e-T/U 1 IiI2_ (T;U,@;U' '
JO O o '¢ ) ) dw'd#' F

+
-- T(T;U,¢;U",¢") _ Z4_u _0_0 _0 0

(T;U", ;U ,¢ )

T(T;U' '•
'_ 'Uo'¢Q) d_'d¢'d_"d@" F
4U'

where

0 o o [ Sn(T;U,¢;UO,@ o),
n=l,3,...

(2)

SI(T;U,@;Uo,@o ) - S(T;U,@;_o,@o ), (3)

and

III[2_S(T;_'@;_'0r0 ',_ )S (_;_' 'Sn(T;u'@;uo'@o) - TT n-i '_ ;Uo' )du'
o -_-r d@ ' • (4)

The factor F/4U is included in equation (i) to make clear the

physical basis for that equation. The first term on the right

side is the intensity of radiation diffusely scattered from the

upper layer without interaction with the lower layer• The re-

maining terms are the radiation transmitted downward by the upper

layer (diffusely or without interaction), scattered any number of

times back and forth between the two layers, and finally transmitted

upward by the upper layer• Similarly an equation for T(2T;U,¢;U ,@ ) is
o o
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T(2_;_,_;_o,_o ) = T(T;_,_;Uo,#o ) e-T/Uo + e-T/UT(T;U,_;UO,%O)

m

+ e-T/P X (T;p,_;p ,_ ) e T/p
E O O

+_F_ J0j0 '_ ) T(T;U ,_ ;Uo,%o ) _ d#'

+ e-T/Uo 1 [i12_ ,_ ) 7e ,_ ;UO,_O)--_T d_'_0_0 T(T;U,¢;U' ' (T;U' ' d_'

(5)

+e--T/U 1 Ill 2_
_-_ _0_0 X

(T;_,@;_' ' , , du'
,# ) T(_;U ,_ ;Uo,_o ) 7 d_

,_") x (_;_,' " , ,+ .._--_ T(_;U,#;_" ,_ ;U ,_ )

du' du"
T(T;U',#';Uo,_ o) --_r d#' --_ d#"

where

X (_;u,#;Uo,_o) _ X S (_;u,%;Uo,# o) (6)
n=2,4.., n "

The above equations are equivalent to those of van de Hulst (1963).

We have further derived equations which include the effect of a re-

flecting planetary surface and internal sources (e.g., thermal emis-

sion) but we will omit these since they easily follow from the

doubling principle.
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III. INITIAL LAYER FOR COMPUTATIONS

The above equations provide the scattering and transmission

functions for layers of increasing thickness provided those func-

tions are known for any initial layer. However, accurate solutions

of the radiative transfer equationare often difficult to obtain

and inaccuracies can lead to an increased error after many doub-

lings. But for very thin layers the radiation singly scattered is

an approximate solution which is known for any given phase function.

For T<<I the ratio of multiply scattered radiation to singly scat-

tered radiation is =_ and hence the relative error in S or T is

2-25only about 1 part in 10 7 at an initial optical thickness T = .
0

Moreover, the above equations suggest that the relative error will

not increase much during the doublings until T approaches unity

(since for x<<l, S and T are <<I) and the numerical computations

verify this. Consequently, if the computations are started at very

small T , then when T reaches values -I the scattering and trans-
0

mission functions are sufficiently accurate for the doubling to be

carried to very thick layers.

The well known expression for the intensity of singly scat-

tered radiation (Chandrasekhar 1960) gives us the following initial

functions

El-exp T O [ P(_,_;-Uo,_ o) (7)
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T(_o;U,_;Uo,_o) = '[- [o I exp(-xo/Uo)-exp(-_o/U) P(-u,_;-Uo,_o )
(8)

where P(u,%;_o,_o ) is the phase function normalized to _ , the0

albedo for single scattering. These equations provide the initial

values for S and T but since the terms in brackets involve the dif-

ferences of nearly equal numbers some of the accuracy would be lost

on a computer; hence it is better to expand the exponentials in

2

power series and keep terms through T
O

The sums (eq. [23 and eq. [61 ) may be truncated at some n=N-5

with the omitted terms replaced by the geometric formula. This is

a result of the fact that radiation scattered back and forth between

the two layers tends toward an isotropic distribution after a number

of such scatterings and hence the ratio of successive terms in the

infinite series approaches a constant value (a conclusion already

reached by van de Hulst (1963) for thick layers).

Considerable advantage is gained in computing time if the azi-

muth dependent functions are expanded in Fourier series in _-_o"

If the phase function may be expanded in cosines of the scattering

angle then

S(T;u,_;Uo,_o ) = [ sm(T;_,u ) cos m(_-# o) (9)
m=0 o
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where

1
sm(_;U,_o ) = (2__0,m) o,_o ) cos m(_'-_o) d_'

(io)

and 6
0,m

= 0 if m _ 0

= 1 if m= 0

and similar expressions exist for T. From these it is easily

verified that each component doubles independently, i.e., each

pair Sm and Tm satisfies equations like (I) and (5) but the

terms in the infinite series are given by

Slm[_;_,Uo ) = sm(T;U'Uo ) (ii)

and

sm(_;u'uo )_=n 1 Ilsm(_;u u') Sm du'
(4-2_0,m) _0 , n_l(T;u',Uo) -7 •

(12)

The computational method is straightforward and efficient

since it consists of evaluating sums and integrals which may be

replaced by sums through Gauss quadrature. The same program is

applicable to any phase function but for elongated functions an

increased number of Gauss divisions must be used to maintain the

accuracy. For finite _ the results check exactly to the 6 digit
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accuracy available for a few simple phase functions and the same

i5
is true when the results for _ = 2 are compared to the "exact"

values for x = _. In the azimuth dependent case with elongated

phase functions the results check to the 4 digits of accuracy

which is estimated for calculations by Hansen (1967), who used

the invariant imbedding approach, and for calculations by Potter

(1968), who used the Neumann series method.
t

Except for strongly peaked phase functions the computing

time is negligible. For aerosol phase functions varying by 3

orders of magnitude from their peak value to their low value

(requiring - 50 terms in the cos m# expansion) the total computing

time is 3 minutes on the IBM 360/95 for the scattering and trans-

mission functions (and derived quantities) for every (not each)

T multiple of 2 from 2 -25 to 29 for 13 values of u, 13 values of

and any reasonable number of values of _-_o"

O '

IV. REFLECTIVITY OF CLOUDS

TO illustrate the utility of the computing method the diffuse

reflection from ice clouds in the near-infrared has been computed.

The phase functions including the a!bedo for single scattering,

, were kindly computed by H. Cheyney from Mie scattering theory
0

for spherical particles. The "cloud model" size distribution of

particles (Deirmendjian, 1964), which has its maximum at diameter

8u, was used and the optical constants were taken from Irvine and
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Pollack (1968). Although natural Ice crystals are highly non-

spherical, it is often assumed that randomly oriented nonspherical

particles may be approximated by spheres. The results for water

clouds would be qualitatively the same as those for ice since the

optical constants of water and ice are similar in the near-infrared;

however, the corresponding features would be shifted slightly (_.lu)

in wavelength and in absolute value.

The calculations were made at 20 wavelengths between .95u and

3.6_ including each wavelength at which the tables of Irvine and

Pollack show the absorbtivity to be an extremum. The computed

values of _ (x) are given in Table 1 along with the relative optical
O

thickness of the cloud as a function of wavelength. Representative

phase functions shown in Figure 1 illustrate the increasingly sharp

forward scattering toward shorter wavelengths and the damping of

backscattering at wavelengths (~3u) where the absorption is large.

The spherical albedo as a function of wavelength is shown in

Figure 2 for several optical thicknesses of the cloud. Although

the scattering is not far from being conservative (_0_.95) for

X<2.7_, it is obvious from the albedos for increasinglv thick

layers that multiple scattering greatly enhances the "absorption"

features near 1.5 and 2.0u; the minor features at 1.03 and 2.6u,

however, are just visible for thick layers. Since _0(X) depends

strongly on particle size it will be worthwhile to makecalcula-

tions for other particle size distributions and to compare the

results to measurements of atmospheric and laboratory clouds.
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Angular distributio_ of the scattered light are shown in

Figures 3-8 for the phase function for A=.95u. In the calcula-

tions for those figures the scattering was assumed to be conserva-

tive (_0=i); hence the results are approximately valid for clouds

0

of either water or ice spheres for wavelengths from 4000A to

O

I_00A because the absorbtivity of both materials is negligible

in that region and the real refractive indices are within the

small range 1.30_nr_1.34. The effects of Rayleigh scattering and

molecular absorption are not included. For wavelengths other

than .95_ the results apply to a size distribution peaking at a

diameter d such that d/A = 8Z95. In the calculations for Figures

3-8 140 terms were employed in the cosine expansions and 40

divisions on the interval (0,i); the number of divisions was

varied and the results suggest that the errors are 5 1% for all

angles. The reflection function which has been graphed is

defined by

R(T;V,%;Vo,# o) =

S(T;V,_;V ,_o )
o . (13)

4U

Reflectivities are shown for thin (7=1), intermediate (7=4)

and very thick (T=128) clouds for w_ich cases the spherical

albedos are 13.3, 34.0 and 93.5%, respectively. Thus the

diffuse transmission is significant even for extremely dense

clouds; this is due to the fact that the scattering im
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conservative and peaked in the forward direction.

For conservative scattering it is often assumed that

thick clouds may be approximated by a Lambert reflector

(R(_;_,_;_o,_ o) _ u o) in which case the reflectivities would

be horizontal lines in Figures 3-8. The graphs confirm a

trend toward Lambertian reflection but Figures 3-5 indicate that

even for x=12B there is still a nonnegligible dependence of the

reflectivity on u, especially when the incident direction is

near grazing (c°s-lUo 90°)" Figures 6-8 verify that much of the

azimuth dependence of the reflectivity disappears for thick lay-

ers but this also does not hold for large incident angles.

In Figures 6-8 the intensity of light singly scattered from

the cloud is also shown; these curves are only given for the

layer of thickness T=I since the increase for thicker layers is

small. Except for thin layers and near grazing incident and

emergent angles it is apparent that the light singly scattered

represents only a small fraction of the total reflected radiation,

and it is for this reason that the features of the phase function

are much diluted for thick layers.

The results of this section suggest that it may be possible

to obtain a certain amount of information about the phase function

of cloud particles from measurements of the angular distribution

of reflected visual light, but since measurements near the gra_-

ing direction are difficult that approach may not be very

practical except for thin clouds. However, for thick clouds the
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spectral features in the near infrared become strong and hence

that wavelength region appears especially promising for cloud

identification.
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SINGLE

.95

1.03

i.i0

1.30

1.52

1.70

1.85

1.90

2.00

2.15

TABLE 1

PARTICLE ALBEDO AND RELATIVE

(_)
O

.99995

.99986

.99994

.99929

.97126

.99201

.99754

.98574

.94775

.97887

T (_)

1.0000

1.0057

1.0096

1.0223

1.0350

1.0445

1.0520

1.0545

1.0597

1.0688

2.30

2.50

2.55

2.60

2.70

2.80

3.00

3.20

3.40

3.60

CLOUD

(_)
0

.99424

.98153

.98172

.98402

.95297

.85250

.46917

.49668

.64311

.83445

OPTICAL THICKNESS

T (_)

1.0828

1.1490

1.1883

1.2333

1.3117

1.2866

.9704

1.0919

1.1132

1.1477
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Figure Captions

Fig. i. Phase functions normalized to unity at four repre-

sentative wavelengths in the near infrared for a cloud of ice

spheres. The spheres follow the "cloud model" size distribution

which has its maximum at diameter 8u. The inset on the right is

an enlargement of the phase functions near the forward peak.

Fig. 2. Spherical albedo in the near infrared of a plane

parallel cloud of ice spheres with the "cloud model" size dis-

tribution of particles.

-I

Fig. 3. Reflection function versus 8 = cos u for _-_o = 0°"

The results are for the sharply peaked phase function typical of

o o

some clouds in the range 4000A-10,000A (the curve labeled _=.95

in Fig. i).

Fig. 4.

Fig. 5.

Fig. 6.

_-_o for _o

The same as Figure 3 but for _-_o = 60o

The same as Figure 3 but for _-#o = 180°

Reflection function versus azimuth angle

--I 0

COS _o = 85 . The results are for the peaked

phase function labeled _ = .95_ in Figure i. The single scat-

tering curves are for an optical thickness 7=1 but they are also

approximately valid for thicker layers.

Fig. 7. The same as Figure 6 but for 0° = 60 °

Fig. 8. The same as Figure 6 but for 80 300
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